Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Milorad Ninkovic

Milorad Ninkovic

University of Novi Sad, Serbia

Title: Modification of epoxy resins by thermoplastic polyurethanes based on polycarbonate diol

Biography

Biography: Milorad Ninkovic

Abstract

In this thesis, the modification of epoxy resins with thermoplastic polyurethanes of good elastic properties was performed. The influence of synthesized polyurethane based on the polycarbonate diol was studied (5,10 and 15% by weight in relation to epoxy), as well as the share of hard elastomeric segments (20, 25 and 30% by weight), was studied on the process of epoxy composite networking. The networking of epoxy hybrid materials was investigated using differential scanning calorimeter (DSC Q20 TA Instruments), at three different heating rates (5, 10 and 20oC/min). For the modification of epoxy resins, thermoplastic polyurethane films with a different share of hard segments (20, 25 and 30% by weight) were used. Synthesized polyurethane elastomers were added to the epoxy in various weight percentages relative to the resin (5, 10 and 15 wt%). To mix elastomers and epoxides, a composite mixture was mixed with a magnetic stirrer at 60oC for 2 hours. Then for better homogenization, the mixture is further stirred for 20 min in an ultrasonic bath. After that, the Jeffamine D-2000 cross-linker was added to the prepared binary component. The new reaction mixture was then placed for 1 hour in a vacuum dryer to remove the residual bubbles of CO2. In order to obtain films, the reaction mixture is poured onto polypropylene plates. After 24 hours at room temperature, the polypropylene plates were placed in the dryer, where the process of networking modified epoxy resins lasted an an additional 4 hours at 140oC.